By Topic

LPC-VQ based Hidden Markov Models for Similarity Searching in DNA Sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tuan D. Pham ; Bioinformatics Applications Research Center and the School of Information Technology, James Cook University, Townsville, QLD 4811, Australia. E-mail: ; Hong Yan

Given a newly found gene of some particular genome and a database of sequences whose functions have been known, it must be very helpful if we can search through the database and identify those that are similar to the particular new sequence. The search results may help us to understand the functional role, regulation, and expression of the new gene by the inference from the similar database sequences. This is the task of any methods developed for biological database searching. In this paper we present a new application of the theories of linear predictive coding, vector quantization, and hidden Markov models to address the problem of DNA sequence similarity search where there is no need for sequence alignment. The proposed approach has been tested and compared with some existing methods against real DNA and genomic datasets. The experimental results demonstrate its potential use for such purpose.

Published in:

2006 IEEE International Conference on Systems, Man and Cybernetics  (Volume:2 )

Date of Conference:

8-11 Oct. 2006