By Topic

Fault-Tolerant Interior-Permanent-Magnet Machines for Hybrid Electric Vehicle Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Parsa, L. ; Rensselaer Polytech. Inst., Troy ; Toliyat, H.A.

Multiphase interior permanent magnet (IPM) motors are very good candidates for hybrid electric vehicle applications. High torque pulsation is the major disadvantage of most IPM motor configurations. A five-phase IPM motor with low torque pulsation is discussed. The mathematical model of the five-phase motor is given. A control strategy that provides fault tolerance to five-phase permanent-magnet motors is introduced. In this scheme, the five-phase system continues operating safely under loss of up to two phases without any additional hardware connections. This feature is very important in traction and propulsion applications where high reliability is of major importance. The system that is introduced in this paper will guarantee high efficiency, high performance, and high reliability, which are required for automotive applications A prototype four-pole IPM motor with 15 stator slots has been built and is used for experimental verification.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:56 ,  Issue: 4 )