By Topic

Iterative Joint Channel Estimation and Data Detection Using Superimposed Training: Algorithms and Performance Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaohong Meng ; Auburn Univ., Auburn ; Tugnait, J.K. ; Shuangchi He

Channel estimation for single-input multiple-output time-invariant channels is considered using superimposed training. A periodic (nonrandom) training sequence is arithmetically added (superimposed) at low power to the information sequence at the transmitter before modulation and transmission. We extend a recently proposed first-order statistics-based channel estimation approach (IEEE Commun. Lett., vol. 7, p. 413, 2003) to iterative joint channel estimation and data detection using a conditional maximum likelihood approach where the information sequence is exploited to enhance performance instead of being viewed as interference. An approximate performance analysis of the iterative channel estimation method is also presented under certain simplifying assumptions. Illustrative computer simulation examples are presented.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:56 ,  Issue: 4 )