Cart (Loading....) | Create Account
Close category search window

Analysis and Design of Distributed Space–Time Trellis Codes With Amplify-and-Forward Relaying

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Canpolat, O.. ; Res. in Motion, Waterloo ; Uysal, M. ; Fareed, M.M.

We study the asymptotic behavior of a cooperative scheme operating in amplify-and-forward (AF) mode when the number of relay terminals tends to infinity. We consider three time-division-multiple-access-based cooperation protocols which realize different degrees of broadcasting and receive collision. Optimal design rules for distributed space-time codes (STCs) are derived through the investigation of pairwise error probability expression for each considered protocol. The derived design rules reveal a Euclidean-distance-type performance metric, including some scaling terms due to the effects of AF operation mode and cooperation protocols as well as path loss/shadowing effects associated with the underlying relay links. Based on the derived criteria, an exhaustive computer code search is conducted to find out optimal distributed STCs. Our search results indicate the optimality of conventional designs, i.e., based on classical Euclidean distance, for relay numbers larger than two in a distributed scenario. For the special cases of one and two relays, we present novel distributed codes which are able to outperform their conventional counterparts and demonstrate robustness against distributed implementation.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:56 ,  Issue: 4 )

Date of Publication:

July 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.