Cart (Loading....) | Create Account
Close category search window
 

Volume Catheter Parallel Conductance Varies Between End-Systole and End-Diastole

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

In order for the conductance catheter system to accurately measure instantaneous cardiac blood volume, it is necessary to determine and remove the contribution from parallel myocardial tissue. In previous studies, the myocardium has been treated as either purely resistive or purely capacitive when developing methods to estimate the myocardial contribution. We propose that both the capacitive and the resistive properties of the myocardium are substantial, and neither should be ignored. Hence, the measured result should be labeled admittance rather than conductance. We have measured the admittance (magnitude and phase angle) of the left ventricle in the mouse, and have shown that it is measurable and increases with frequency. Further, this more accurate technique suggests that the myocardial contribution to measured admittance varies between end-systole and end-diastole, contrary to previous literature. We have tested these hypotheses both with numerical finite-element models for a mouse left ventricle constructed from magnetic resonance imaging images, and with in vivo admittance measurements in the murine left ventricle. Finally, we propose a new method to determine the instantaneous myocardial contribution to the measured left ventricular admittance that does not require saline injection or other intervention to calibrate.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:54 ,  Issue: 8 )

Date of Publication:

Aug. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.