By Topic

Smart Microrobots for Mechanical Cell Characterization and Cell Convoying

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Boukallel, M.. ; Robotics Lab. of Paris, Paris ; Gauthier, M. ; Dauge, M.. ; Piat, E..
more authors

This paper deals with the effective design of smart microrobots for both mechanical cell characterization and cell convoying for in vitro fertilization. The first microrobotic device was developed to evaluate oocyte mechanical behavior in order to sort oocytes. A multi-axial micro-force sensor based on a frictionless magnetic bearing was developed. The second microrobotic device presented is a cell convoying device consisting of a wireless micropusher based on magnetic actuation. As wireless capabilities are supported by this microrobotic system, no power supply connections to the micropusher are needed. Preliminary experiments have been performed regarding both cell transporting and biomechanical characterization capabilities under in vitro conditions on human oocytes so as to demonstrate the viability and effectiveness of the proposed setups.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:54 ,  Issue: 8 )