By Topic

Software Connector Classification and Selection for Data-Intensive Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chris A. Mattmann ; California Institute of Technology ; David Woollard ; Nenad v ; Reza Mahjourian

Data-intensive systems and applications transfer large volumes of data and metadata to highly distributed users separated by geographic distance and organizational boundaries. An influential element in these large volume data transfers is the selection of the appropriate software connector that satisfies user constraints on the required data distribution scenarios. Currently, this task is typically accomplished by consulting "gurus", who rely on their intuitions, at best backed by anecdotal evidence. In this paper we present a systematic approach for selecting software connectors based on eight key dimensions of data distribution that we use to represent the data distribution scenarios. Our approach, dubbed DISCO, has been implemented as a Java-based framework. The early experience with DISCO indicates good accuracy and scalability.

Published in:

Incorporating COTS Software into Software Systems: Tools and Techniques, 2007. IWICSS '07. Second International Workshop on

Date of Conference:

20-26 May 2007