By Topic

Time-Sharing Parallel Applications with Performance Isolation and Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bin Lin ; Northwestern University, USA ; Ananth I. Sundararaj ; Peter A. Dinda

Most parallel machines, such as clusters, are space-shared in order to isolate batch parallel applications from each other and optimize their performance. However, this leads to low utilization or potentially long waiting times. We propose a self-adaptive approach to time-sharing such machines that provides isolation and allows the execution rate of an application to be tightly controlled by the administrator. Our approach combines a periodic real-time scheduler on each node with a global feedback-based control system that governs the local schedulers. We have developed an online system that implements our approach. The system takes as input a target execution rate for each application, and automatically and continuously adjusts the applications' realtime schedules to achieve those rates with proportional CPU utilization. Target rates can be dynamically adjusted. Applications are performance-isolated from each other and from other work that is not using our system. We present an extensive evaluation that shows that the system remains stable with low response times, and that our focus on CPU isolation and control does not come at the significant expense of network I/O, disk I/O, or memory isolation.

Published in:

Fourth International Conference on Autonomic Computing (ICAC'07)

Date of Conference:

11-15 June 2007