Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Determining Fault Tolerance of XOR-Based Erasure Codes Efficiently

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wylie, J.J. ; Hewlett-Packard Labs, Palo Alto ; Swaminathan, R.

We propose a new fault tolerance metric for XOR-based erasure codes: the minimal erasures list (MEL). A minimal erasure is a set of erasures that leads to irrecoverable data loss and in which every erasure is necessary and sufficient for this to be so. The MEL is the enumeration of all minimal erasures. An XOR-based erasure code has an irregular structure that may permit it to tolerate faults at and beyond its Hamming distance. The MEL completely describes the fault tolerance of an XOR-based erasure code at and beyond its Hamming distance; it is therefore a useful metric for comparing the fault tolerance of such codes. We also propose an algorithm that efficiently determines the MEL of an erasure code. This algorithm uses the structure of the erasure code to efficiently determine the MEL. We show that, in practice, the number of minimal erasures for a given code is much less than the total number of sets of erasures that lead to data loss: in our empirical results for one corpus of codes, there were over 80 times fewer minimal erasures. We use the proposed algorithm to identify the most fault tolerant XOR-based erasure code for all possible systematic erasure codes with up to seven data symbols and up to seven parity symbols.

Published in:

Dependable Systems and Networks, 2007. DSN '07. 37th Annual IEEE/IFIP International Conference on

Date of Conference:

25-28 June 2007