By Topic

Parameter Estimation of Signal Transduction Pathways Using Probability Density Function of Measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Taiyuan Liu ; Inst. of Autom., Chinese Acad. of Sci. Beijing, Beijing ; Jianfang Jia ; Hong Wang ; Hong Yue

Parameter estimation of signal transduction pathway models is a challenging task as such models are normally nonlinear, high dimensional, and the measurement data is limited and corrupted by noise. In this paper, a novel method for parameter estimation is proposed, in which the distance between the probability density function (PDF) of the model output and the PDF of the measurement data is minimized. This method has been applied to estimate unknown parameters of a TNFalpha- mediated NF-kappaB signal transduction pathway model. The simulation results show the effectiveness of this new algorithm.

Published in:

Bioinformatics and Biomedical Engineering, 2007. ICBBE 2007. The 1st International Conference on

Date of Conference:

6-8 July 2007