Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Information Visualization of Multi-dimensional Cellular Automata using GPU Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gobron, S. ; Univ. of Aix-Marseille II, Marseille ; Mestre, D.

We propose a method for generating all possible rules of multi-dimension Boolean cellular automata (CA). Based on an original encoding method and the programming of graphical processor units (GPU), this method allows us to visualize the CA information flow in real-time so that emerging behaviors can be easily identified. Algorithms of first and von Neumann neighborhood second degrees are detailed with their respective fragment shaders programs. As symmetrical CA rules are especially useful in many research fields, we propose an encoding technique to automatically derive their codes; we then apply this technique to identify the 4096 possible cases for surface CA. To show the efficiency of our model a set of converging global behaviors are listed and described. In the last part of the paper we present methods for developing Moore neighborhood in two and in three dimensions. Finally we discuss issues concerning computation and the visualization of non-Boolean and higher dimension CA.

Published in:

Information Visualization, 2007. IV '07. 11th International Conference

Date of Conference:

4-6 July 2007