Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Lifetime Aware Resource Management for Sensor Network Using Distributed Genetic Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qinru Qiu ; Dept. of Electr. & Comput., Eng. Binghamton Univ., NY ; Qing Wu ; Burns, D. ; Holzhauer, D.

In this work we consider lifetime-aware resource management for sensor network using distributed genetic algorithm (GA). Our goal is to allocate different detection methods to different sensor nodes in the way such that the required detection probability can be achieved while the network lifetime is maximized. The contribution of this paper is twofold. Firstly, the resource management problem is formulated as a constraint optimization problem and is solved using a distributed GA. Secondly, empirical analysis results are provided that reveals the relationship between the configuration parameters and the quality of the search. A regression model is designed to estimate the runtime of the distributed GA given the configuration parameters. The model is utilized to find energy efficient configurations of the algorithm

Published in:

Low Power Electronics and Design, 2006. ISLPED'06. Proceedings of the 2006 International Symposium on

Date of Conference:

4-6 Oct. 2006