By Topic

Time-Borrowing Multi-Cycle On-Chip Interconnects for Delay Variation Tolerance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Insertion of time-borrowing (TB) flip-flops in multi-cycle repeater-based on-chip interconnects enables significant improvements in mean performance and energy by averaging systematic and random within-die (WID) delay variations across multiple interconnect segments. A statistically-based analytical model is derived to design a TB N-cycle interconnects with optimal delay variation tolerance. The model elucidates the dependency of the transparency window required to achieve data delay averaging on the delay variation mismatch between interconnect segments. Statistical circuit simulations and analyses in a 65nm process technology demonstrate that TB multi-cycle interconnects enable a 4-6% mean maximum clock frequency (FMAX) improvement and a corresponding 10% average energy savings over optimally designed multi-cycle interconnects with conventional master-slave flip-flops. The maximum mean FMAX benefit ranges from 4.0-7.5%, corresponding to approximately a bin-split shift in the FMAX distribution. For 1.41X larger WID delay variations, the maximum mean FMAX gain rises to 5-10%

Published in:

Low Power Electronics and Design, 2006. ISLPED'06. Proceedings of the 2006 International Symposium on

Date of Conference:

4-6 Oct. 2006