By Topic

Cache-Aware Timing Analysis of Streaming Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chakraborty, S. ; Nat. Univ. of Singapore, Singapore ; Mitra, T. ; Roychoudhury, A. ; Thiele, L.
more authors

Of late, there has been a considerable interest in models, algorithms and methodologies specifically targeted towards designing hardware and software for streaming applications. Such applications process potentially infinite streams of audio/video data or network packets and are found in a wide range of devices, starting from mobile phones to set-top boxes. Given a streaming application and an architecture, the timing analysis problem is to determine the timing properties of the processed data stream, given the timing properties of the input stream. Most of the previous work related to estimating or optimizing these timing properties take a high-level view of the architecture and neglect microarchitectural features such as caches. In this paper, we show that an accurate estimation of a streaming application's timing properties, however, heavily relies on an appropriate modeling of the processor micro-architecture, such as its instruction cache. Towards this, we present a novel framework for timing analysis of stream processing applications. Our framework accurately models the evolution of the instruction cache of the underlying processor as a stream is processed, and the fact that the execution time involved in processing any data item depends on all the previous data items occurring in the stream. We have implemented a prototype of this framework partly in C and partly in Mathematica and plan to integrate it into a design-space exploration tool for system-level design of hardware-software architectures for streaming applications.

Published in:

Real-Time Systems, 2007. ECRTS '07. 19th Euromicro Conference on

Date of Conference:

4-6 July 2007