Cart (Loading....) | Create Account
Close category search window
 

The Space of EDF Feasible Deadlines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bini, E. ; Scuola Superiore Sant''Anna, Pisa ; Buttazzo, G.

It is well known that the performance of computer controlled systems is heavily affected by delays and jitter occurring in the control loops, which are mainly caused by the interference introduced by other concurrent activities. A common approach adopted to reduce delay and jitter in periodic task systems is to decrease relative deadlines as much as possible, but without jeopardising the schedulability of the task set. In this paper, we formally characterise the region of admissible deadlines so that the system designer can appropriately select the desired values to maximise a given performance index defined over the task set. Finally we also provide a sufficient region of feasible deadlines which is proved to be convex.

Published in:

Real-Time Systems, 2007. ECRTS '07. 19th Euromicro Conference on

Date of Conference:

4-6 July 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.