By Topic

Fault Diagnosis With Convolutional Compactors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mrugalski, G. ; Mentor Graphics Corp., Wilsonville ; Pogiel, A. ; Rajski, J. ; Tyszer, J.

This paper presents new nonadaptive fault-diagnosis techniques for scan-based designs. They guarantee accurate and time-efficient identification of failing scan cells based on results of convolutional compaction of test responses. The essence of the method is to use a branch-and-bound algorithm to narrow the set of scan cells down to certain sites that are most likely to capture faulty signals. This search is guided by a number of heuristics and self-learned information used to accelerate the diagnosis process for the subsequent test patterns. A variety of experimental results for benchmark circuits, industrial designs, and real fail logs confirm the feasibility of the proposed approach even in the presence of unknown states. The scheme remains consistent with a single test session scenario and allows high-volume in-production diagnosis.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:26 ,  Issue: 8 )