By Topic

Active Contour External Force Using Vector Field Convolution for Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bing Li ; Virginia Univ., Charlottesville ; Scott T. Acton

Snakes, or active contours, have been widely used in image processing applications. Typical roadblocks to consistent performance include limited capture range, noise sensitivity, and poor convergence to concavities. This paper proposes a new external force for active contours, called vector field convolution (VFC), to address these problems. VFC is calculated by convolving the edge map generated from the image with the user-defined vector field kernel. We propose two structures for the magnitude function of the vector field kernel, and we provide an analytical method to estimate the parameter of the magnitude function. Mixed VFC is introduced to alleviate the possible leakage problem caused by choosing inappropriate parameters. We also demonstrate that the standard external force and the gradient vector flow (GVF) external force are special cases of VFC in certain scenarios. Examples and comparisons with GVF are presented in this paper to show the advantages of this innovation, including superior noise robustness, reduced computational cost, and the flexibility of tailoring the force field.

Published in:

IEEE Transactions on Image Processing  (Volume:16 ,  Issue: 8 )