By Topic

Text Extraction and Document Image Segmentation Using Matched Wavelets and MRF Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kumar, S. ; IBM India Res. Lab., Delhi ; Gupta, R. ; Khanna, N. ; Chaudhury, S.
more authors

In this paper, we have proposed a novel scheme for the extraction of textual areas of an image using globally matched wavelet filters. A clustering-based technique has been devised for estimating globally matched wavelet filters using a collection of groundtruth images. We have extended our text extraction scheme for the segmentation of document images into text, background, and picture components (which include graphics and continuous tone images). Multiple, two-class Fisher classifiers have been used for this purpose. We also exploit contextual information by using a Markov random field formulation-based pixel labeling scheme for refinement of the segmentation results. Experimental results have established effectiveness of our approach.

Published in:

Image Processing, IEEE Transactions on  (Volume:16 ,  Issue: 8 )