By Topic

Robust Image Watermarking Based on Multiband Wavelets and Empirical Mode Decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ning Bi ; Sun Yat-Sen Univ., Guangzhou ; Qiyu Sun ; Daren Huang ; Zhihua Yang
more authors

In this paper, we propose a blind image watermarking algorithm based on the multiband wavelet transformation and the empirical mode decomposition. Unlike the watermark algorithms based on the traditional two-band wavelet transform, where the watermark bits are embedded directly on the wavelet coefficients, in the proposed scheme, we embed the watermark bits in the mean trend of some middle-frequency subimages in the wavelet domain. We further select appropriate dilation factor and filters in the multiband wavelet transform to achieve better performance in terms of perceptually invisibility and the robustness of the watermark. The experimental results show that the proposed blind watermarking scheme is robust against JPEG compression, Gaussian noise, salt and pepper noise, median filtering, and Con-vFilter attacks. The comparison analysis demonstrate that our scheme has better performance than the watermarking schemes reported recently.

Published in:

Image Processing, IEEE Transactions on  (Volume:16 ,  Issue: 8 )