By Topic

Parallel Morphological Endmember Extraction Using Commodity Graphics Hardware

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Javier Setoain ; Dept. of Comput. Archit., Complutense Univ., Madrid ; Manuel Prieto ; Christian Tenllado ; Antonio Plaza
more authors

Spatial/spectral algorithms have been shown in previous work to be a promising approach to the problem of extracting image end members from remotely sensed hyperspectral data. Such algorithms map nicely on high-performance systems such as massively parallel clusters and networks of computers. Unfortunately, these systems are generally expensive and difficult to adapt to onboard data processing scenarios, in which low-weight and low-power integrated components are highly desirable to reduce mission payload. An exciting new development in this context is the emergence of graphics processing units (GPUs), which can now satisfy extremely high computational requirements at low cost. In this letter, we propose a GPU-based implementation of the automated morphological end member extraction algorithm, which is used in this letter as a representative case study of joint spatial/spectral techniques for hyperspectral image processing. The proposed implementation is quantitatively assessed in terms of both end member extraction accuracy and parallel efficiency, using two generations of commercial GPUs from NVidia. Combined, these parts offer a thoughtful perspective on the potential and emerging challenges of implementing hyperspectral imaging algorithms on commodity graphics hardware.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:4 ,  Issue: 3 )