By Topic

A Low-Power High-Resolution Broad-Band Radar Using a Pulse Compression Technique for Meteorological Application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tomoaki Mega ; Dept. of Aerosp. Eng., Osaka Prefecture Univ., Sakai ; Kazushi Monden ; Tomoo Ushio ; Ken'ichi Okamoto
more authors

A new high-resolution Ku-band Doppler radar for meteorological applications has been developed. With the new system design, the radar can accurately measure the radar reflectivity factor with 4-m resolution over a range from 40 m to several kilometers for 100-mW power using a pulse compression technique. Details of the system design, signal processing algorithm, and data acquisition procedures are described. To demonstrate the accuracy of the system, the radar reflectivity measurements are compared with the Joss-Waldvogel disdrometer measurements, and fairly good agreement is shown. The ability of the system to capture the backscattered signal and Doppler spectrum from rain volume at low altitude with high resolution is demonstrated for both convective- and stratiform-type rain events.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:4 ,  Issue: 3 )