Cart (Loading....) | Create Account
Close category search window

On Learning Decision Rules From Flow Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chien-Chung Chan ; Akron Univ., Akron ; Tsumoto, S.

The use of flow graphs to represent information flow distribution from data tables for intelligent data analysis was first proposed by Pawlak. This paper studies the representation of flow graphs by multiset decision tables. This representation is minimal. Inspired by the flow graphs, a new rule learning algorithm based on this representation is presented with examples. Two sets of rules are learned from certain examples and examples in the boundary set. Rules are characterized by Bayesian factors introduced by Pawlak.

Published in:

Fuzzy Information Processing Society, 2007. NAFIPS '07. Annual Meeting of the North American

Date of Conference:

24-27 June 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.