By Topic

Control of DFIG-Based Wind Generation Systems under Unbalanced Network Supply

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yi Wang ; Queen''s Univ. of Belfast, Belfast ; Lie Xu

This paper develops a dynamic model and control scheme for DFIG systems to improve the performance and stability under unbalanced grid conditions. A dynamic DFIG model containing the positive and negative sequence components is presented using stator voltage orientation. The proposed model accurately illustrates the active power, reactive power and torque oscillations, and provides a basis for DFIG control system design during unbalanced network supply. Various control targets such as eliminating the oscillations of the torque, active/reactive power are discussed and the required rotor negative sequence current for fulfilling different control targets are described. Performance of a DFIG-based wind turbine under unbalanced condition using the proposed control method is evaluated by simulation studies using Matlab/Simulink. The proposed control scheme significantly attenuates the DFIG torque or active power oscillations during network unbalance whereas significant torque/power oscillations exist with the conventional control schemes.

Published in:

Electric Machines & Drives Conference, 2007. IEMDC '07. IEEE International  (Volume:1 )

Date of Conference:

3-5 May 2007