Cart (Loading....) | Create Account
Close category search window
 

Improved Rotor Position Estimation in Extended Back-EMF Based Sensorless PM Brushless AC Drives with Magnetic Saliency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Li, Y. ; Univ. of Sheffield, Sheffield ; Zhu, Z.Q. ; Howe, D. ; Bingham, C.M.

An improved extended back-EMF based sensorless control method is proposed for a brushless AC motor equipped with an interior permanent magnet rotor. It accounts for dq-axis cross-coupling magnetic saturation by introducing an apparent mutual winding inductance. The error which results in the estimated rotor position when the influence of cross-coupling magnetic saturation is neglected is analyzed analytically, predicted by finite element analysis, and confirmed experimentally, for various d- and q-axis currents. It is shown that a significant improvement in the accuracy of the rotor position estimation can be achieved by the proposed method, as confirmed by measurements.

Published in:

Electric Machines & Drives Conference, 2007. IEMDC '07. IEEE International  (Volume:1 )

Date of Conference:

3-5 May 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.