By Topic

Target Tracking with Online Feature Selection in FLIR Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Venkataraman, V. ; Oklahoma State Univ., Stillwater ; Guoliang Fan ; Xin Fan

We present a particle filter-based target tracking algorithm for FLIR imagery. A dual foreground and background model is proposed for target representation which supports robust and accurate target tracking and size estimation. A novel online feature selection technique is introduced that is able to adoptively select the optimal feature to maximize the tracking confidence. Moreover, a coupled particle filtering approach is developed for joint target tracking and feature selection in an unified Bayesian estimation framework. The experimental results show that the proposed algorithm can accurately track poorly-visible targets in FLIR imagery even with strong ego-motion. The tracking performance is improved when compared to the tracker with a foreground-based target model and without online feature selection.

Published in:

Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on

Date of Conference:

17-22 June 2007