By Topic

A Bayesian algorithm for tracking multiple moving objects in outdoor surveillance video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Narayana, M. ; Univ. of Kansas, Lawrence ; Haverkamp, D.

Reliable tracking of multiple moving objects in video is an interesting challenge, made difficult in real-world video by various sources of noise and uncertainty. We propose a Bayesian approach to find correspondences between moving objects over frames. By using color values and position information of the moving objects as observations, we probabilistically assign tracks to those objects. We allow for tracks to be lost and then recovered when they resurface. The probabilistic assignment method, along with the ability to recover lost tracks, adds robustness to the tracking system. We present results that show that the Bayesian method performs well in difficult tracking cases and compare the probabilistic results to a Euclidean distance based method.

Published in:

Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on

Date of Conference:

17-22 June 2007