Cart (Loading....) | Create Account
Close category search window

Optimal Dimensionality Discriminant Analysis and Its Application to Image Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Dimensionality reduction is an important issue when facing high-dimensional data. For supervised dimensionality reduction, linear discriminant analysis (LDA) is one of the most popular methods and has been successfully applied in many classification problems. However, there are several drawbacks in LDA. First, it suffers from the singularity problem, which makes it hard to preform. Second, LDA has the distribution assumption which may make it fail in applications where the distribution is more complex than Gaussian. Third, LDA can not determine the optimal dimensionality for discriminant analysis, which is an important issue but has often been neglected previously. In this paper, we propose a new algorithm and endeavor to solve all these three problems. Furthermore, we present that our method can be extended to the two-dimensional case, in which the optimal dimensionalities of the two projection matrices can be determined simultaneously. Experimental results show that our methods are effective and demonstrate much higher performance in comparison to LDA.

Published in:

Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on

Date of Conference:

17-22 June 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.