By Topic

Manifold Learning Techniques in Image Analysis of High-dimensional Diffusion Tensor Magnetic Resonance Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Khurd, P. ; Univ. of Pennsylvania, Philadelphia ; Baloch, S. ; Gur, R. ; Davatzikos, C.
more authors

Diffusion tensor magnetic resonance imaging (DT-MRI) provides a comprehensive characterization of white matter (WM) in the brain and therefore, plays a crucial role in the investigation of diseases in which WM is suspected to be compromised such as multiple sclerosis and neuropsychiatric disorders like schizophrenia. However changes induced by pathology may be subtle and affected regions of the brain can only be revealed by a group-based analysis of patients in comparison with healthy controls. This in turn requires voxel-based statistical analysis of spatially normalized brain DT images, as in the case of conventional MR images. However this process is rendered extremely challenging in DT-MRI due to the high dimensionality of the data and its inherent non-linearity that causes linear component analysis methods to be inapplicable. We therefore propose a novel framework for the statistical analysis of DT-MRI data using manifold-based techniques such as isomap and kernel PCA that determine the underlying manifold structure of the data, embed it to a manifold and help perform high dimensional statistics on the manifold to determine regions of difference between the groups of patients and controls. The framework has been successfully applied to DT-MRI data from patients with schizophrenia, as well as to study developmental changes in small animals, both of which identify regional changes, indicating the need for manifold-based methods for the statistical analysis of DTI.

Published in:

Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on

Date of Conference:

17-22 June 2007