By Topic

Learning Motion Categories using both Semantic and Structural Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kwan-Yee Kenneth Wong ; Univ. of Cambridge, Cambridge ; Tae-Kyun Kim ; Cipolla, R.

Current approaches to motion category recognition typically focus on either full spatiotemporal volume analysis (holistic approach) or analysis of the content of spatiotemporal interest points (part-based approach). Holistic approaches tend to be more sensitive to noise e.g. geometric variations, while part-based approaches usually ignore structural dependencies between parts. This paper presents a novel generative model, which extends probabilistic latent semantic analysis (pLSA), to capture both semantic (content of parts) and structural (connection between parts) information for motion category recognition. The structural information learnt can also be used to infer the location of motion for the purpose of motion detection. We test our algorithm on challenging datasets involving human actions, facial expressions and hand gestures and show its performance is better than existing unsupervised methods in both tasks of motion localisation and recognition.

Published in:

Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on

Date of Conference:

17-22 June 2007