By Topic

Towards Scalable Representations of Object Categories: Learning a Hierarchy of Parts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fidler, S. ; Univ. of Ljubljana, Ljubljana ; Leonardis, A.

This paper proposes a novel approach to constructing a hierarchical representation of visual input that aims to enable recognition and detection of a large number of object categories. Inspired by the principles of efficient indexing (bottom-up,), robust matching (top-down,), and ideas of compositionality, our approach learns a hierarchy of spatially flexible compositions, i.e. parts, in an unsupervised, statistics-driven manner. Starting with simple, frequent features, we learn the statistically most significant compositions (parts composed of parts), which consequently define the next layer. Parts are learned sequentially, layer after layer, optimally adjusting to the visual data. Lower layers are learned in a category-independent way to obtain complex, yet sharable visual building blocks, which is a crucial step towards a scalable representation. Higher layers of the hierarchy, on the other hand, are constructed by using specific categories, achieving a category representation with a small number of highly generalizable parts that gained their structural flexibility through composition within the hierarchy. Built in this way, new categories can be efficiently and continuously added to the system by adding a small number of parts only in the higher layers. The approach is demonstrated on a large collection of images and a variety of object categories. Detection results confirm the effectiveness and robustness of the learned parts.

Published in:

Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on

Date of Conference:

17-22 June 2007