By Topic

Human Detection via Classification on Riemannian Manifolds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Oncel Tuzel ; Rutgers University, CS, Piscataway, NJ 08854. ; Fatih Porikli ; Peter Meer

We present a new algorithm to detect humans in still images utilizing covariance matrices as object descriptors. Since these descriptors do not lie on a vector space, well known machine learning techniques are not adequate to learn the classifiers. The space of d-dimensional nonsingular covariance matrices can be represented as a connected Riemannian manifold. We present a novel approach for classifying points lying on a Riemannian manifold by incorporating the a priori information about the geometry of the space. The algorithm is tested on INRIA human database where superior detection rates are observed over the previous approaches.

Published in:

2007 IEEE Conference on Computer Vision and Pattern Recognition

Date of Conference:

17-22 June 2007