By Topic

Single View Human Action Recognition using Key Pose Matching and Viterbi Path Searching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fengjun Lv ; Univ. of Southern California, Los Angeles ; Nevatia, R.

3D human pose recovery is considered as a fundamental step in view-invariant human action recognition. However, inferring 3D poses from a single view usually is slow due to the large number of parameters that need to be estimated and recovered poses are often ambiguous due to the perspective projection. We present an approach that does not explicitly infer 3D pose at each frame. Instead, from existing action models we search for a series of actions that best match the input sequence. In our approach, each action is modeled as a series of synthetic 2D human poses rendered from a wide range of viewpoints. The constraints on transition of the synthetic poses is represented by a graph model called Action Net. Given the input, silhouette matching between the input frames and the key poses is performed first using an enhanced Pyramid Match Kernel algorithm. The best matched sequence of actions is then tracked using the Viterbi algorithm. We demonstrate this approach on a challenging video sets consisting of 15 complex action classes.

Published in:

Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on

Date of Conference:

17-22 June 2007