By Topic

Connecting the Out-of-Sample and Pre-Image Problems in Kernel Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Kernel methods have been widely studied in the field of pattern recognition. These methods implicitly map, "the kernel trick," the data into a space which is more appropriate for analysis. Many manifold learning and dimensionality reduction techniques are simply kernel methods for which the mapping is explicitly computed. In such cases, two problems related with the mapping arise: The out-of-sample extension and the pre-image computation. In this paper we propose a new pre-image method based on the Nystrom formulation for the out-of-sample extension, showing the connections between both problems. We also address the importance of normalization in the feature space, which has been ignored by standard pre-image algorithms. As an example, we apply these ideas to the Gaussian kernel, and relate our approach to other popular pre-image methods. Finally, we show the application of these techniques in the study of dynamic shapes.

Published in:

Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on

Date of Conference:

17-22 June 2007