By Topic

Groupwise Shape Registration on Raw Edge Sequence via A Spatio-Temporal Generative Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Huijun Di ; State Key Laboratory of Pervasive Computing, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, PR China. ; Rao Naveed Iqbal ; Guangyou Xu ; Linmi Tao

Groupwise shape registration of raw edge sequence is addressed. Automatically extracted edge maps are treated as noised input shape of the deformable object and their registration are considered, results can be used to build statistical shape models without laborious manual labeling process. Dealing with raw edges poses several challenges, to fight against them a novel spatio-temporal generative model is proposed which joints shape registration and trajectory tracking. Mean shape, consistent correspondences among edge sequence and associated non-rigid transformations are jointly inferred under EM framework. Our algorithm is tested on real video sequences of a dancing ballerina, talking face, and walking person. Results achieved are interesting, promising, and prove the robustness of our method. Potential applications can be found in statistical shape analysis, action recognition, object tracking, etc.

Published in:

2007 IEEE Conference on Computer Vision and Pattern Recognition

Date of Conference:

17-22 June 2007