By Topic

Delaunay Deformable Models: Topology-Adaptive Meshes Based on the Restricted Delaunay Triangulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jean-Philippe Pons ; WILLOW, INRIA / ENS / École des Ponts, Paris, France. ; Jean-Daniel Boissonnat

In this paper, we propose a robust and efficient Lagrangian approach, which we call Delaunay deformable models, for modeling moving surfaces undergoing large deformations and topology changes. Our work uses the concept of restricted Delaunay triangulation, borrowed from computational geometry. In our approach, the interface is represented by a triangular mesh embedded in the Delaunay tetrahedralization of interface points. The mesh is iteratively updated by computing the restricted Delaunay triangulation of the deformed objects. Our method has many advantages over popular Eulerian techniques such as the level set method and over hybrid Eulerian-Lagrangian techniques such as the particle level set method: localization accuracy, adaptive resolution, ability to track properties associated to the interface, seamless handling of triple junctions. Our work brings a rigorous and efficient alternative to existing topology-adaptive mesh techniques such as T-snakes.

Published in:

2007 IEEE Conference on Computer Vision and Pattern Recognition

Date of Conference:

17-22 June 2007