By Topic

Multiple Target Tracking Using Spatio-Temporal Markov Chain Monte Carlo Data Association

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qian Yu ; Univ. of Southern California, Los Angeles ; Medioni, G. ; Cohen, I.

We propose a framework for general multiple target tracking, where the input is a set of candidate regions in each frame, as obtained from a state of the art background learning, and the goal is to recover trajectories of targets over time from noisy observations. Due to occlusions by targets and static objects, noisy segmentation and false alarms, one foreground region may not correspond to one target faithfully. Therefore the one-to-one assumption used in most data association algorithm is not always satisfied. Our method overcomes the one-to-one assumption by formulating the visual tracking problem in terms of finding the best spatial and temporal association of observations, which maximizes the consistency of both motion and appearance of trajectories. To avoid enumerating all possible solutions, we take a data driven Markov chain Monte Carlo (DD-MCMC) approach to sample the solution space efficiently. The sampling is driven by an informed proposal scheme controlled by a joint probability model combining motion and appearance. To make sure the Markov chain to converge to a desired distribution, we propose an automatic approach to determine the parameters in the target distribution. Comparative experiments with quantitative evaluations are provided.

Published in:

Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on

Date of Conference:

17-22 June 2007