By Topic

Phase and Amplitude Noise Analysis in Microwave Oscillators Using Nodal Harmonic Balance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sergio Sancho ; Univ. of Cantabria, Santander ; Almudena Suarez ; Franco Ramirez

In this paper, a nodal harmonic balance (HB) formulation is presented for the phase and amplitude noise analysis of free-running oscillators. The implications of using different constraints in the resolution of the perturbed-oscillator equations are studied. The obtained formulation allows the prediction of the possible spectrum resonances without ill conditioning at low frequency offset from the carrier. The noise spectrum is meaningfully expressed in terms of the eigenvalues of a newly defined matrix, obtained from the linearization of the nodal HB system about the steady-state solution. The cases of real or complex-conjugate dominant eigenvalues are distinguished. The developed phase-noise formulation is extended to a system of two coupled oscillators. The phase and amplitude noise analyses have been applied to a push-push oscillator at 18 GHz, a bipolar oscillator at 1 GHz, and a coupled system of two field-effect transistor oscillators at 6 GHz.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:55 ,  Issue: 7 )