By Topic

Optimal LQ-Feedback Regulation of a Nonisothermal Plug Flow Reactor Model by Spectral Factorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aksikas, I. ; Univ. Catholique de Louvain, Louvain-la-Neuve ; Winkin, J.J. ; Dochain, D.

The linear-quadratic (LQ) optimal temperature and reactant concentration regulation problem is studied for a partial differential equation model of a nonisothermal plug flow tubular reactor by using a nonlinear infinite dimensional Hilbert state space description. First the dynamical properties of the linearized model around a constant temperature equilibrium profile along the reactor are studied: it is shown that it is exponentially stable and (approximately) reachable. Next the general concept of LQ-feedback is introduced. It turns out that any LQ-feedback is optimal from the input-output viewpoint and stabilizing. For the plug flow reactor linearized model, a state LQ-feedback operator is computed via the solution of a matrix Riccati differential equation (MRDE) in the space variable. Thanks to the reachability property, the computed LQ-feedback is actually the optimal one. Then the latter is applied to the nonlinear model, and the resulting closed-loop system dynamical performances are analyzed. A criterion is given which guarantees that the constant temperature equilibrium profile is an asymptotically stable equilibrium of the closed-loop system. Moreover, under the same criterion, it is shown that the control law designed previously is optimal along the nonlinear closed-loop model with respect to some cost criterion. The results are illustrated by some numerical simulations.

Published in:

Automatic Control, IEEE Transactions on  (Volume:52 ,  Issue: 7 )