Cart (Loading....) | Create Account
Close category search window
 

Ultrahigh Frequency Carbon Nanotube Transistor Based on a Single Nanotube

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wang, D. ; RF Nano Corp., Irvine ; Yu, Z. ; McKernan, S. ; Burke, P.J.

Single-walled carbon nanotube field-effect transistors (CNT FETs) are predicted to have intrinsic cutoff frequencies approaching the THz range. Here ldquointrinsicrdquo means that the parasitic capacitance due to fringing fields is negligible compared to the gate-source capacitance required to modulate the conductance. In practice, although there are strategies proposed to mitigate this based on parallel arrays of CNT FETs, this parasitic capacitance dominates most geometries (even aligned arrays to date). In this work we show nanotube transistor performance with maximum stable gain above 1 GHz (even including the parasitics) by combining ldquoon-chiprdquo the electrical properties of 100 CNT FETs fabricated on one long nanotube. This also solves the problem of impedance matching by boosting the on current to a large (mA) value, and at the same time allows one to extract properties of each individual CNT FET, since they are identical in electrical characteristics as they are made out of the same CNT. This strategy opens the door to applications of carbon nanotube devices in the RF and microwave frequency range, a technologically relevant portion of the spectrum for both wired and wireless electronics, that has been (until now) incompatible with nanotube device technology.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:6 ,  Issue: 4 )

Date of Publication:

July 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.