By Topic

Coupled Mode Space Approach for the Simulation of Realistic Carbon Nanotube Field-Effect Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fiori, G. ; Pisa Univ., Pisa ; Iannaccone, G. ; Klimeck, G.

A coupled mode space approach within the nonequilibrium Green's function formalism is presented, which allows performing simulations of realistic carbon nanotube field-effect transistors (CNT-FETs) with no spatial symmetry. Computing time is significantly reduced with respect to the real space approach, since only few modes are needed in order to obtain accurate results. The advantage of the method increases with increasing nanotube diameter, and is a factor of 20 in computing time for a (25,0) nanotube. As a consequence, computationally demanding simulations like those required by a statistical investigation, or by a device performance study based on the exploration of the design space, become more affordable. As a further test of the method, we have applied the coupled mode space approach to double-gate CNT-FETs devices and devices with discrete distribution of doping atoms. In the latter case, nonballistic transport due to elastic scattering with ionized impurities in doped source and drain extensions occurs. We show that even in the case of very rough potential, the coupled mode space approach is accurate with very few modes, enabling atomistic simulations of statistical properties with reduced computational resources.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:6 ,  Issue: 4 )