By Topic

Communication-Efficient Tracking of Distributed Cumulative Triggers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ling Huang ; UC Berkeley, Berkeley, CA ; Garofalakis, Minos ; Joseph, A.D. ; Taft, N.

In recent work, we proposed D-Trigger, a framework for tracking a global condition over a large network that allows us to detect anomalies while only collecting a very limited amount of data from distributed monitors. In this paper, we expand our previous work by designing a new class of queries (conditions) that can be tracked for anomaly violations. We show how security violations can be detected over a time window of any size. This is important because security operators do not know in advance the window of time in which measurements should be made to detect anomalies. We also present an algorithm that determines how each machine should filter its time series measurements before back-hauling them to a central operations center. Our filters are computed analytically such that upper bounds on false positive and missed detection rates are guaranteed. In our evaluation, we show that botnet detection can be carried out successfully over a distributed set of machines, while simultaneously filtering out 80 to 90% of the measurement data.

Published in:

Distributed Computing Systems, 2007. ICDCS '07. 27th International Conference on

Date of Conference:

25-27 June 2007