By Topic

Disruption-Tolerant Link-level Mechanisms for Extreme Wireless Network Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Subramanian, V. ; Electr., Comput., & Syst. Eng. Dept., Rensselaer Polytech. Inst., Troy, NY, USA ; Ramakrishnan, K.K. ; Kalyanaraman, S.

Wireless links pose significant challenges in terms of achievable goodput and residual loss-rate. Our recent enhancements, called LT-TCP make TCP loss-tolerant in heavy/bursty erasure environments. Link-level protocols mitigate these problems by using a combination of FEC and ARQ but are insufficient when the channel experiences disruptions. When the underlying source of loss is interference (e.g., 802.11 environments), MAC-level mechanisms misinterpret interference as noise leading to poor scheduling (e.g., capture effects) and limit the benefit of transport layer mitigation efforts. We propose enhancements to link-level protocols that enable survival during disruptions. We explore an adaptive link-level strategy to export a small residual loss rate and bounded latency under high loss/ disruption conditions. We evaluate the proposed link-level enhancements, showing that the combination with LT-TCP helps achieve significant end-to-end performance gains. We also demonstrate the trade-off between reduced link layer residual loss (by increasing ARQ persistence) and transport layer timeouts.

Published in:

Communication Systems Software and Middleware, 2007. COMSWARE 2007. 2nd International Conference on

Date of Conference:

7-12 Jan. 2007