Cart (Loading....) | Create Account
Close category search window
 

AIM Analysis of Electromagnetic Scattering by Arbitrarily Shaped Magnetodielectric Object

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei-Bin Ewe ; Inst. of High Performance Comput., Singapore ; Er-Ping Li ; Hong-Son Chu ; Le-Wei Li

A fast solution to the electromagnetic scattering by large-scale three-dimensional magnetodielectric objects with arbitrary permittivity and permeability is presented. The scattering problem is characterized by using coupled field volume integral equation (CF-VIE). By considering the total electric and magnetic fields, i.e., the sum of incident fields and the radiated fields by equivalent electric and magnetic volume currents, the CF-VIE can be established in the volume of the scatterers. The resultant CF-VIE is discretized and solved by using the method of moments (MoM). For large-scale scattering problems, the adaptive integral method (AIM) is then applied in the MoM in order to reduce the memory requirement and accelerate the matrix-vector multiplication in the iterative solver. The conventional AIM has been modified to cope with the two sets of equivalent volume currents.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:55 ,  Issue: 7 )

Date of Publication:

July 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.