By Topic

A Wavelet-Based Multiresolution Approach to Solve the Stereo Correspondence Problem Using Mutual Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sarkar, I. ; State Univ. of New York, Buffalo ; Bansal, M.

In this correspondence, we propose a wavelet-based hierarchical approach using mutual information (MI) to solve the correspondence problem in stereo vision. The correspondence problem involves identifying corresponding pixels between images of a given stereo pair. This results in a disparity map, which is required to extract depth information of the relevant scene. Until recently, mostly correlation-based methods have been used to solve the correspondence problem. However, the performance of correlation-based methods degrades significantly when there is a change in illumination between the two images of the stereo pair. Recent studies indicate MI to be a more robust stereo matching metric for images affected by such radiometric distortions. In this short correspondence paper, we compare the performances of MI and correlation-based metrics for different types of illumination changes between stereo images. MI, as a statistical metric, is computationally more expensive. We propose a wavelet-based hierarchical technique to counter the increase in computational cost and show its effectiveness in stereo matching.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:37 ,  Issue: 4 )