By Topic

Observer-Based H_{\infty } Control for T–S Fuzzy Systems With Time Delay: Delay-Dependent Design Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This correspondence studies the problem of observer-based Hinfin control for time-delay Takagi-Sugeno (T-S) fuzzy systems. It provides a delay-dependent linear matrix inequality (LMI)-based method for the control design. It is known that the key important problem in the literature, even for delay-independent case, lies in the difficulty of decoupling matrix variables in corresponding matrix inequalities. This correspondence suggests a decoupling technique for solving matrix inequalities with coupled variables, and provides an LMI-based algorithm by adopting the idea of the cone complementarity problem. The derivation relies on the appropriate choice of Lyaponuv-Krasovskii functionals which incorporate the intersections among local systems. Illustrative examples are given to show the effectiveness of the present delay-dependent result.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:37 ,  Issue: 4 )