Cart (Loading....) | Create Account
Close category search window
 

Scaling Genetic Programming to Large Datasets Using Hierarchical Dynamic Subset Selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Curry, R. ; Dalhousie Univ., Halifax ; Lichodzijewski, P. ; Heywood, M.I.

The computational overhead of genetic programming (GP) may be directly addressed without recourse to hardware solutions using active learning algorithms based on the random or dynamic subset selection heuristics (RSS or DSS). This correspondence begins by presenting a family of hierarchical DSS algorithms: RSS-DSS, cascaded RSS-DSS, and the balanced block DSS algorithm, where the latter has not been previously introduced. Extensive benchmarking over four unbalanced real-world binary classification problems with 30000-500000 training exemplars demonstrates that both the cascade and balanced block algorithms are able to reduce the likelihood of degenerates while providing a significant improvement in classification accuracy relative to the original RSS-DSS algorithm. Moreover, comparison with GP trained without an active learning algorithm indicates that classification performance is not compromised, while training is completed in minutes as opposed to half a day.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:37 ,  Issue: 4 )

Date of Publication:

Aug. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.