By Topic

A Ripple-Mitigating and Energy-Efficient Fuel Cell Power-Conditioning System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mazumder, S.K. ; Univ. of Illinois, Chicago ; Burra, R.K. ; Acharya, K.

We describe an energy-efficient, fuel-cell power-conditioning system (PCS) for stationary application, which reduces the variations in the current drawn from the fuel-cell stack and can potentially meet the $40/kW cost target. The PCS consists of a zero-ripple boost converter (ZRBC) followed by a soft-switched and multilevel high-frequency (HF) inverter and a single-phase cycloconverter. The ZRBC comprises a new zero-ripple filter (ZRF), which significantly reduces the input low- and high-frequency current ripples, thereby potentially enhancing the durability of the stack. A new phase-shifted sinewave modulation of the multilevel HF inverter is proposed, which results in the zero-voltage switching (ZVS) of all four switches without the use of any auxiliary circuit components. For such a sine wave modulation technique, >90% ZVS range is obtained per line cycle for about 70% of the rated load. Further, the line-frequency switching of the cycloconverter (at close to unity power factor) results in extremely low switching losses. The intermediate dc bus facilitates the inclusion of power systems based on other forms of alternative-energy techniques (e.g., photovoltaic/high-voltage stack). A 5 kW prototype of the proposed PCS is built, which currently achieves a peak efficiency of 92.4%. We present a detailed description of the operation of the PCS along with its key features and advantages. Finally, experimental results showing the satisfactory performance and the operation of the PCS are demonstrated.

Published in:

Power Electronics, IEEE Transactions on  (Volume:22 ,  Issue: 4 )