By Topic

Detection of Rotor Eccentricity Faults in a Closed-Loop Drive-Connected Induction Motor Using an Artificial Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xianghui Huang ; GE Global Res., Niskayuna ; Habetler, T.G. ; Harley, R.G.

A new method for the detection of rotor eccentricity faults in a closed-loop drive-connected induction motor is reported in this paper. Unlike a line-fed electric motor, the eccentricity-related fault signals exist in the current as well as the voltage of a drive-connected motor. Meanwhile, since the speed and therefore the mechanical load can change widely in variable speed applications, the amplitudes of the fault signals will vary accordingly. An artificial neural network is used in the detection to learn the complex relationship between the eccentricity-related harmonic amplitudes and the operating conditions. The neural network can estimate a threshold corresponding to an operating condition, which can then be used to predict the motor condition. The neural network is trained and tested with data collected on drive-connected 4-pole, 7.5 Hp, three-phase induction motors. The experimental results validate that the detection method is feasible over the whole range of operating conditions of the experimental motors.

Published in:

Power Electronics, IEEE Transactions on  (Volume:22 ,  Issue: 4 )