By Topic

Novel Gaussian quantum-behaved particle swarm optimiser applied to electromagnetic design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Coelho, L.S. ; Ind. & Syst. Eng. Grad. Program, Pontifical Catholic Univ. of Parana, Curitiba

Design of global optimisation approaches inspired by swarm intelligence is an emergent research area with population and evolution characteristics similar to those of evolutionary algorithms. However, the swarm intelligence concept differs in that it emphasises co-operative behaviour among group members. Particle swarm optimisation (PSO) is a population-based swarm intelligence algorithm driven by the simulation of a social psychological metaphor instead of survival of the fittest individual. Inspired by the classical PSO method and quantum mechanics theories, this work presents a novel quantum-behaved PSO (QPSO) approach using mutation operator with Gaussian probability distribution, called G-QPSO. The simulation results demonstrate good performance of the QPSO and G-QPSO in solving a significant benchmark problem in electromagnetic area, the shape design of Loney's solenoid benchmark problem.

Published in:

Science, Measurement & Technology, IET  (Volume:1 ,  Issue: 5 )