By Topic

Deadlock Resolution in Automated Manufacturing Systems With Robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
NaiQi Wu ; Guangdong Univ. of Technol., Guangzhou ; MengChu Zhou

An automated manufacturing system (AMS) contains a number of versatile machines (or workstations), buffers, and an automated material handling system (MHS). The MHS can be an automated guide vehicle (AGV) system, and/or a system that consists of multiple robots. Deadlock resolution in AMS is an important issue. For the AMS with an AGV system as MHS, the problems of deadlock resolution for part processing process and AGV system as an integrated system has been studied. It is shown that AGVs can serve as both material handling devices and central buffers at the same time to help resolve deadlocks. For AMS with robots as MHS, the existing work treated the robots just as material handling devices and showed that the robots had contribution to deadlock. In this paper, such AMS is modeled by resource-oriented Petri nets. Contrary to the existing work, it is shown that the robots have no contribution to deadlock by adopting such nets to control AMS. More interestingly, they can be used to resolve deadlock by serving as temporary part storage devices. A new deadlock control policy is proposed by treating robots as both material handling devices and buffers. The new policy outperforms the existing ones.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:4 ,  Issue: 3 )